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Abstract

In this paper, we focus on the scheduling of preventive railway maintenance activ-
ities. The objective is to keep the railway infrastructure in good operating condi-
tions at low costs, also taking into account the limited available resources in what
concerns crew members. Equipments degrade with usage and age and a good pre-
ventive maintenance program can greatly reduce their unreliability in the sense that
expectable failures can be anticipated. We propose a mixed integer programming
formulation for the problem of scheduling preventive railway maintenance activities
and a Variable Neighborhood Search (VNS) algorithm to solve large instances of
the problem.
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1 Introduction

Rail transport is one of the safest and most environmentally friendly means
of conveyance of passengers and goods. By making regions and markets more
accessible, it plays a main role in the development of countries due not only to
its impact on the economy but also to its social role. In order to support the
increase of traffic due to globalization and personal interchanges, many efforts
have to be done to keep rail transport safe, efficient and competitive. This
can be achieved through technical elements like supervision, maintenance, and
standardization.

In this paper, we focus on the scheduling of preventive railway maintenance
activities. The objective is to keep the railway infrastructure in good operating
conditions at low costs, also taking into account the limited available resources
in what concerns crew members.

Equipments degrade with usage and age and a good preventive mainte-
nance program can greatly reduce their unreliability in the sense that ex-
pectable failures can be anticipated. Although this represents additional costs,
these are typically much less important than the ones caused by the failure
of an equipment, which can cause the failure of a complete system, added
of a subsequent corrective maintenance. In sum, to prevent that stochastic
failures occur frequently on the railway infrastructure, it is important to per-
form preventive maintenance on a regular basis. This helps to reduce the
probability of the occurrence of a failure on the components of the railway
infrastructure and maximizes the operational benefits [5,1]. The main goal
of preventive maintenance is to prevent possible failures before they actually
happen, reducing costs and increasing reliability of equipments and services.

We propose a mixed integer programming formulation for the problem of
scheduling preventive railway maintenance activities and a Variable Neighbor-
hood Search (VNS) algorithm to solve large instances of the problem.

2 Problem description

There is a set of maintenance activities to perform during a planning horizon
composed of |T | periods. As pointed out by [3], maintenance activities in
railways can be divided into two categories: small and large routine works.
Therefore, we consider two different kinds of maintenance activities: routine
works with smaller durations and projects with larger durations. Routine
works, such as inspections, cleaning operations and small repairs, are con-
ducted on a periodic basis, whereas projects are considered to be conducted
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once within the horizon (ballast cleaning, rail grinding, etc.). More formally,
the maintenance activities to be performed belong to one of two different sets:
routine maintenance activities (R) or projects (P ). The set of all activities is
therefore defined as A = R∪P . Routine maintenance activities are performed
at a single period and are cyclic. Each activity a ∈ R has a defined frequency

F a =
⌊
|T |
La

⌋
, where La denotes the duration of the interval between two con-

secutive repetitions of activity a. Projects are performed only once but have
a duration Dp that is typically larger than one period. Each project p ∈ P
must begin at a period belonging to a defined interval Tp and its activities
continue to be performed during the Dp − 1 subsequent periods.

Whenever at least one activity is being performed at a period t ∈ T , the
rail link must be closed and the system incurs into a holding cost ct. This
cost is independent of the number of activities being performed. This means
that it is interesting to try to combine activities to be allocated to the same
periods.

However, there are some activities that are incompatible. A given set C =
{(a1, a2)| activities a1, a2 ∈ A can be performed at the same period} defines
the compatible activities, i.e. the pairs of activities that can be performed at
a same period. This problem was first described in Budai et al. [2], where
the authors proposed a Mixed Integer Programming (MIP) formulation and
several heuristics to solve the problem.

We further consider that there is a resource limitation. It is related to the
fact that performing activities implies having a sufficiently large number of
crew members and equipments. It is defined that the capacity of the company
in what concerns these two resources is of performing at most θ activities at
the same period. Each additional activity incurs into a penalization αt that
may represent additional costs of outsourcing, paying extra hours to workers,
renting additional machines, among others.

3 Mathematical formulation

Let xa
t , y

p
t , mt be binary variables defining respectively whether activity a ∈ A

is performed at period t ∈ T or not, whether project p ∈ P is started at period
t or not and whether there is any activity being performed at instant t ∈ T or
not. The difference between the sum of allocated activities at a given period
t ∈ T and the maximum desirable number of activities θ is represented by the
integer variable δt.

This problem can be modeled with the following MIP formulation with
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assignment and positional date variables.

min
∑
t∈T

ctmt +
∑
t∈T

αtδt (1)

s.t.

La∑
t=1

xa
t = 1 ∀a ∈ R (2)

xa
t = xa

t+qLa ∀a ∈ R, t ∈ {1, . . . , La}, 1 ≤ q ≤ F a − 1 (3)∑
t∈Tp

ypt = 1 ∀p ∈ P, (4)

xp
s ≥ ypt ∀p ∈ P, t ∈ Tp, s = t, . . . , t+Dp − 1, (5)

xm
t + xn

t ≤ 1 ∀t ∈ T, (m,n) /∈ C, (6)

mt ≥ xa
t ∀t ∈ T, ∀a ∈ A, (7)

δt ≥
∑
a∈A

xa
t − θ ∀t ∈ T, (8)

δt ≥ 0 ∀t ∈ T, (9)

xa
t , y

p
t , mt ∈ {0, 1} ∀t ∈ T, ∀a ∈ A, p ∈ P (10)

The objective function (1) minimizes the total operational costs, which
comprise the track occupancy costs and the penalization costs of assigning
more than θ activities to the same period. The unit penalization cost of
period t is denoted by αt. Every cyclic routine maintenance activity a ∈ R
must be performed at regular intervals of La periods (constraints (2) and (3)),
and every project must begin at a period within its beginning interval Tp and
continue through the Dp − 1 subsequent periods (constraints (4) and (5)).
Constraints (6) ensure that only compatible activities are performed at the
same period and constraints (7) guarantee that a track occupancy cost will
be taken into account for every period with at least one allocated activity.
Finally, constraints (8) and (9) define the number of activities that surpass θ
for every time period.

4 Variable Neighborhood Search algorithm

We propose a Variable Neighborhood Search (VNS) [6,4]for this problem. A
solution S is represented by an array S = {sa|a ∈ A}, |S| = |A|, where sa
represents the first period where a is performed, if a is a routine maintenance
activity, or the starting period of a, if a is a project. Therefore, 1 ≤ sa ≤
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La, ∀a ∈ R, and sa ∈ Ta, ∀a ∈ P .

A solution may be infeasible if there is any pair of incompatible activities
being performed at the same period. Thus, the objective function for a solution
S is defined as:

f(S) =
∑
t∈T

ctmt(S) +
∑
t∈T

αtδt + Pf ×NbConf(S),

where mt(S) is equal to 1 if there is any activity being performed at period t
and equal to 0 otherwise, Pf is a penalty factor and NbConf(S) is the number
of pairs of conflicts in solution S.

As explained before, δt represents the difference between the sum of allo-
cated activities at a given period t ∈ T and the maximum desirable number
of activities θ, i.e. δt = nat − θ, where nat represents the number of activities
allocated to period t. We compute nat as

nat = |{a ∈ P : sa ≤ t < sa +Da}|+ |{a ∈ R : La|(t− sa)}|

and mt as

mt =

⎧⎨
⎩

0, if nat = 0;

1, if nat > 0.

The initial solution (Initial_solution) is random. Each sa ∈ S corre-
sponds to a random integer number belonging to [1, La] if a ∈ R and to Ta if
a ∈ P .

The shaking (Shake) is performed in neighborhoods Nk and consists of k
randomly selected moves. Each move consists of changing sa for randomly
selected activity a ∈ A, being the new value of sa also determined at random.

For the Local Search (LocalSearch), we consider a single type of move
in a neighborhood consisting of all solutions obtained a value sa to one of its
allowed values, belonging to [1, La]\{sa} if a is a routine maintenance activity
or Ta \ {sa} if a is a project.

The method is described in Algorithm 1.
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Algorithm 1 VNS algorithm

1: Function VNS (kmin, kmax, kstep, tmax)

2: S ← Initial_solution

3: k ← kmin

4: repeat

5: S ′ ← Shake(S, k)

6: S ′′ ← LocalSearch(S ′)

7: if f(S ′′) < f(S) then

8: S ← S ′′

9: k ← kmin

10: else

11: k ← k + kstep

12: if k > kmax then

13: k ← kmin

14: end if

15: end if

16: until CPUtime() > tmax

17: return S

5 Computational Results

We conducted computational experiments on a set of 30 instances adapted
from [2], with 15, 20 or 25 routine activities, a number of projects between 0
and 2, ct = 25, ∀t ∈ T , θ = 3 and αt = 30, ∀t ∈ T .

Table 1 reports the computational results obtained with VNS (columns
VNS ), compared with the ones obtained by solving model (1)-(10) with CPLEX
(columns MIP). Both methods were run within a time limit (tmax) of 1800
seconds.

Columns 2-5, 6-9 and 10-13 describe, respectively, the results for instances
with 15 (|R| = 15), 20 (|R| = 20) and 25 (|R| = 25) routine activities.
Columns obj report the best found solution and columns t its corresponding
computational time.
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Table 1: Computational Results

|R| = 15 |R| = 20 |R| = 25

MIP V NS MIP V NS MIP V NS

obj t obj t obj t obj t obj t obj t

1 2545 817,82 2545 0,04 3380 1194,69 3380 2,10 4610 85,57 4610 2,54

2 2275 422,38 2275 1,77 2685 187,53 2685 3,57 3680 1800,02 3650 0,60

3 2615 1089,44 2615 2,85 2470 368,48 2470 0,93 3560 1800,01 3560 0,02

4 2555 277,75 2555 0,04 3170 715,77 3170 0,11 4880 767,44 4880 0,03

5 2100 234,03 2100 0,25 2645 1800,01 2645 1,16 3470 1800,01 3440 3,01

6 2575 130,38 2575 0,03 2690 1800,01 2690 0,12 3920 1800,01 3860 0,49

7 2590 535,36 2590 1,20 3350 1800,01 3320 0,10 3950 1 800,01 3950 1,58

8 2325 1800,01 2325 2,85 3740 988,40 3740 2,70 3470 1800,01 3380 2,85

9 1850 479,54 1850 2,35 2425 1800,02 2390 2,16 6050 10,32 6050 1,30

10 2765 279,82 2765 0,35 2870 1800,01 2870 - 5480 1014,74 5480 0,01

CPLEX solved 60% of the instances to optimality, within the time limit.
For those instances, VNS always found the optimal solution. CPLEX did not
prove the optimality of the solutions of 12 instances. For 6 of them, VNS
found the same solution and for the other 6 it found better solutions (marked
in bold in Table 1). CPLEX took an average computational time of 1047.7
seconds, while VNS only took on average 1.2 seconds to reach the best found
solutions.

6 Conclusions

We address a scheduling preventive railway maintenance activities problem
and propose a Mixed Integer Programming (MIP) formulation and a Variable
Neighborhood Search (VNS) algorithm to solve this problem.
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Computational results show that our VNS is quite efficient for the tested
instances, always providing the optimal solutions for the instances where the
MIP model was able to find them.
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